Databases for research project

Kelwalin Dhanasarnsombut
Customer Consultant
Research Solutions Sales
Elsevier
Who We Are

A global information analytics company specializing in science and health.

Why We Do It

We help you solve your challenges, for the benefit of humanity

What We Do

We help institutions and professionals progress science, advance healthcare and improve performance.

A Unique Combination

Combine content with technology, supported by operational efficiency, to turn information into actionable knowledge.
Elsevier combines content with technology to provide actionable knowledge

Read this

Cell Fundamentals
Gray’s Anatomy

Search this

ScienceDirect
Scopus
ClinicalKey®
Reaxys®

Do this

Sherpath
Mendeley
InferMed
Knovel®
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay current with Science (Scopus)</td>
<td>1</td>
</tr>
<tr>
<td>Discover, read, and learn (ScienceDirect)</td>
<td>2</td>
</tr>
<tr>
<td>Understand research metrics (Scopus)</td>
<td>3</td>
</tr>
<tr>
<td>Choose the right journals</td>
<td>4</td>
</tr>
<tr>
<td>Learning sources for researchers</td>
<td>5</td>
</tr>
<tr>
<td>Q&A</td>
<td>6</td>
</tr>
</tbody>
</table>
Research Process : What I must do?
Where should I begin?

Identify problem
Develop the plan
Conduct research
Gather information
Analysis
Report findings

Take 2 minutes and think about your research project.
Example: My Research

<table>
<thead>
<tr>
<th>Research process</th>
<th>Ideas and action items</th>
</tr>
</thead>
</table>
| Identify problem | “We faces worst drought in decade.”
 | “Is it due to the global warming?”
 | “We must manage our water resources better - But what should we do” |
| Develop the plan | Search for the research in this topic
 | - What is the trend?
 | - Who are key researchers in this field?
 | - How do they conduct the research?
 | - Etc. |
| Gather information | Need information about
 | - Global warming and climate change effect on water resources
 | - Water resources management
 | - Natural science of water
 | - Sampling methods and measurement
 | - Etc. |
| Conduct research | Read and understand methodologies |
| Analysis | Learn how to record, analyze, interpret the data |
| Report findings | Learn how to present sent the data
 | Choose the journal to publish
 | Prepare for the viva or conference |
Need the holistic view : Help me Scopus!
Who is doing what? And what should I do?

Scopus

Specific – make for scientists
Quality – peer reviewed
Easy to use
Scopus
The Bibliographic Index Leader

>70M records and over 23,500 active titles from more than 5K international publishers. More than 3,759 Gold Open Access journals indexed, 165K books and 8,3M conference proceedings*

Unbiased, comprehensive journal coverage with titles from many reputable scholarly publishers:

Source: Feb 2018 title list at https://www.elsevier.com/solutions/scopus/content
Global Representation means global discovery
Across all subjects and content types

Scopus includes content from more than 5,000 publishers and 105 different countries
- 40 different languages covered
- Updated daily
- Multiple regional content types covered (journals, conferences, books, book series)

<table>
<thead>
<tr>
<th>Number of Journals by subject area</th>
<th>Journals</th>
<th>Conference</th>
<th>Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sciences</td>
<td>23,507</td>
<td>106K</td>
<td>613</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>301</td>
<td>Conference events</td>
<td>38K</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>3,784</td>
<td>8.3M</td>
<td>Volumes</td>
</tr>
<tr>
<td>Life Sciences</td>
<td>>8,000</td>
<td>Articles in Press</td>
<td>1.5M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Items</td>
</tr>
</tbody>
</table>

- **Peer-reviewed journals**
- **Trade journals**
- **Active Gold Open Access journals**
- **Articles in Press**
- **Conference events**
- **Conference papers**

- **Mainly Engineering and Computer Sciences**
- **Full metadata, abstracts and cited references**

Source: Scopus.com, January 30, 2018
Time to explore: conduct the search

Document search
Choosing Search Terms
• Use specific search terms that are closely related to your research topic
• Include alternative words and abbreviations
• Avoid words that are too general

Use Boolean Operators
• AND
 - Finds documents that contain ALL of the terms
 - Use this when the terms must appear and may be far apart from each other
 - Example: “malaria” AND human
• OR
 - Finds documents that contain any of the terms
 - Use OR when at least one of the terms must appear (such as synonyms, alternate spellings, or abbreviations)
 - Example: “pain-killer” OR “anti-inflammatory”
• NOT
 - Excludes documents that include the specified term from the search
 - Use NOT to exclude specific terms. This connector must be used at the end of a search.
 - Example: “translation” AND NOT language*
Search Functionality (cont.)

• To search for an exact phrase, including any stop words, spaces and punctuation, enclose the phrase in:

 braces
 {Thermal Performance Investigation on the Boarding Bridge of Beijing's Capital Airport}
 or inverted commas “South East Asia”

• Special characters (TNF-α, El Niño), chemical notations (C₆H₁₂O₆) are included in the search

• Question mark (?) replaces a single character anywhere in a word. Use 1 question mark for each character you want to replace
 color? returns both color and colour
 ?esophagus returns both oesophagus and esophagus

• Asterisk (*) replaces multiple characters anywhere in a word; it can be used to replace 0 and more characters.
 adolescent* retrieves adolescent, adolescents, or adolescence
I want to research in global warming effects on water resource management. I need to do the literature review and stay up-to-date.

- What keywords should I use?

global warming" AND "water resource" AND management

set parameter for titles, abstracts, keywords
We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "moderate" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. © 2009.
Who are the main players in this field?

Which institutes are focusing on this research area?
Climate impacts on European agriculture and water management in the context of adaptation and mitigation: The importance of an integrated approach

Falloon, P., Betts, R.

2010 Science of the Total Environment 408(23), pp. 5667-5687

Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery

Olguin, E.J.

2012 Biotechnology Advances 30(5), pp. 1031-1046

Global warming and the hydrologic cycle

Loaiciga, H.A., Valdes, J.B., Vogel, R., Garvey, J., Schwarz, H.

Carbon emissions and resources use by Chinese economy 2007: A 135-sector inventory and input-output embodiment

Chen, G.Q., Chen, Z.M.

2010 Communications in Nonlinear Science and Numerical Simulation 15(11), pp. 3647-3732

Glacier change in western North America: Influences on hydrology, geomorphic hazards and water quality

Moore, R.D., Fleming, S.W., Menounos, B., (...), Holm, K., Jakob, M.

2009 Hydrological Processes 23(1), pp. 42-61
Climate impacts on European agriculture and water management in the context of adaptation and mitigation: The importance of an integrated approach

Fallon, P., Batts, R.
Met Office Hadley Centre, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom

Abstract

We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability to production, increased water supply and reduced water demand. However, increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management, and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "mimic" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. © 2009.
Science of the Total Environment

Scopus coverage years: 1970, from 1972 to Present
Publisher: Elsevier
ISSN: 0048-9697 E-ISSN: 1879-1026

Subject area:

- Environmental Science: Environmental Engineering
- Environmental Science: Pollution
- Environmental Science: Waste Management and Disposal
- Environmental Science: Environmental Chemistry

CiteScore 2018: 5.92
SJR 2018: 1.536
SNIP 2018: 1.809

CiteScore Tracker 2019: 3.55

Last updated on 10 June, 2019
Updated monthly

Metrics disclaimer: This icon is controlled according to SCImago Metrics, a collaboration between industry and academia.

Climate impacts on European agriculture and water management in the context of adaptation and mitigation: The importance of an integrated approach

Fallon, P. G.; Bates, R.
Met Office Hadley Centre, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom

And another wicked trick.

We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production production, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management, and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "moderate" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. © 2009.

SciVal Topic Prominence

Topic: Weather | Agroforestry | Wind speed
Prominence percentile: 36,867

Author keywords
Adaptation, Agriculture, Climate change, Europe, GHG mitigation, Integration, Water

Indexed keywords
Engineering uncontrolled terms: Adaptation, Agricultural ecosystems, Agricultural greenhouse, Agricultural land, Agricultural production, Climate change impact, Climate impacts, Complex interaction, Crop productivity, Europe, European agriculture, Extreme rainfall, Flood hazards, Flood risks, Future climate, GHG emission, Hydrological cycle, Hydrology, Integrated approach, Management, Mitigation strategy, Per unit, Sectoral impacts, Socioeconomic aspects, Soil organic carbon, Sources of uncertainties, Southern Europe, Water demand

Engineering controlled terms: Crop, Drought, Economics, Ecosystems, Flood control, Global warming, Greenhouse gases, Integrated control, Irrigation, Management
Big players:
Researchers and Affiliation search
81 author results

Author last name "Cox", Author first name "Brian"
Author-level metrics

The **h-index** (and some of its numerous variants) have come to be applied to higher-order aggregations of research publications, including journals. A composite of productivity and citation impact, h-index is defined as the greatest number of publications h for which the count of lifetime citations is greater than or equal to h.

It’s intended to measure the cumulative impact of a researcher’s output by looking at the amount of citations their work has received.

$$\text{Citations} = \text{Papers}$$

https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact
Cox, Brian E.
University of Manchester, Manchester, United Kingdom
Author ID:55538110700

Documents	Citations	Title
1 | 2707 | The ATLAS experiment at th...
2 | 707 | The ATLAS Simulation Infra...
3 | 619 | The upgraded DØ detector
4 | 509 | Observation of a centrality ...
5 | 507 | Deep-inelastic inclusive ep ...
6 | 383 | Transverse-momentum an...
7 | 303 | Inclusive measurement of d...
8 | 277 | Charged-particle multiplicit...
9 | 272 | Measurement and QCD an...

This author's h-index

The h-index is based upon the number of documents and number of citations.
Discover, read, and learn with ScienceDirect
The more I read, the more I know.

I provide you **Journals** for latest knowledge, **books** for fundamental knowledge, and **Topic pages** to help you learn quickly.

Alzheimer's disease (AD) is the most common neurodegenerative disease, accounting for approximately two thirds of all cases of dementia and affecting up to 20% of individuals older than 80 years.

Learn about Alzheimer's disease ➤

www.sciencedirect.com
Journals by Subject Areas

Search for peer-reviewed journals, articles, book chapters and open access content.

Discover more with ScienceDirect

- Receive personalized recommendations based on your recent signed-in activity
- View your reading history
- Create publication and search alerts

Register for personalized features

Explore scientific, technical, and medical research on ScienceDirect

Physical Sciences and Engineering Life Sciences Health Sciences Social Sciences and Humanities

Read based on the subject area – get latest updates, selected articles and more.
The impacts of U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost of China, EU, and Japan under the constraints of global carbon emission space.
Researchers Need Different Content Types for Different Steps in Their Workflow

Books are the knowledge repository from which we learn.
ScienceDirect Topics helps researchers uncover critical and contextual information within their workflow.
We are almost there.

Take 10 minutes – Review your note and …
Use Scopus to identify key researchers and hot topics. Use ScienceDirect to read and download articles.
Research metrics
Article-, Journal-, and Author-level metrics

There are many different metrics used to measure the influence of your articles and the journals in which they are published. Understanding their definitions, uses and limitations will help you make decisions about where to publish in the future.

- **Impact**: The quality
- **Reach**: The exposure
- **Speed**: Deal with information overload

https://www.elsevier.com/editors/journal-and-article-metrics
Article-level metrics

Article-level metrics (ALMs) quantify the reach and impact of published research.

ALMs seek to incorporate data from new sources (such as social media mentions) along with traditional measures (such as citations) to present a richer picture of how an individual article is being discussed, shared, and used.

- Citation
- PlumX Metrics
- Field-Weighted Citation Impact (FWCI)

https://www.elsevier.com/editors/journal-and-article-metrics
Citations

Citation counts how many times the particular article is used as reference. The more citations received, the more published article referred to your article and made use of knowledge you built.

https://www.elsevier.com/editors/journal-and-article-metrics
Effect of Cellulase-producing Microbial Consortium on Biogas Production from Lignocellulosic Biomass

Prapakorn Tantayotai, Peerapong Pornwongthong, Chotika Muenmuang, Theerawut Phussantisampan, Malinee Sriariyan

Abstract

The product of degraded lignocellulose is sugar which can be utilized by microbial consortium for biogas production. However, the hydrolysis of lignocellulose to produce sugar is addressed to be the rate-limiting step due to the complexity of lignocellulose that is barricade for enzyme accessibility. The aim of this work is to study the effect of a lignocellulose degrading microbial consortium to enhance the biogas production from rice straw. Microbial consortium were isolated from natural samples, including horse manure and decomposed wood. The cellulase activities of each microbial consortium derived from horse manure and decomposed wood were characterized to be endo-β-glucanase (0.417 and 0.434 U/mg), exo-β-glucanase (0.116 and 0.184 U/mg) and β-glucosidase (1.069 and 3.184 U/mg), respectively. The batch experiments for biogas production were performed to investigate the effect of each microbial consortia. The results showed that both microbial consortium enhanced the biogas production because the biogas yield increased to 109.60 and 161.49 ml/g.
The Five Categories of PLUMX

Citations – Measures of how many times your research has been cited by others.
- citation indexes, patent citations, clinical citations, policy citations

Captures – Captures track when end users bookmark, favorite, become a reader, become a watcher, etc.
- bookmarks, code forks, favorites, readers, watchers

Usage – Article level usage metrics are the number one statistic that researchers want to know after their citation counts.
- clicks, downloads, views, library holdings, video plays

Mentions – Mentions are where the stories of how people are interacting with research can be discovered.
- blog posts, comments, reviews, Wikipedia references, news media

Social Media – Social media also allows us to track the buzz and attention surrounding research.
- shares, likes, comments, tweets

https://plumanalytics.com/learn/about-metrics/
Plum Print Examples

An example of a Plum Print for an article that has metrics balanced in all categories. [Link to article on PlumX.]

An example of a Plum Print with a lot of Citations and Captures, a small amount of Usage, and no Mentions or Social Media. [Link to article on PlumX.]

An example of a Plum Print with an outsized amount of Social Media. [Link to article on PlumX.]
Effect of Cellulase-producing Microbial Consortium on Biogas Production from Lignocellulosic Biomass

Citation Data: Energy Procedia, ISSN: 1876-6102, Vol: 141, Pages: 180-183
Publication Year: 2017

Metrics Details

<table>
<thead>
<tr>
<th>CITATIONS</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation Indexes</td>
<td>2</td>
</tr>
<tr>
<td>Scopus</td>
<td>2</td>
</tr>
<tr>
<td>CAPTURES</td>
<td>26</td>
</tr>
<tr>
<td>Readers</td>
<td>26</td>
</tr>
<tr>
<td>Mendeley</td>
<td>26</td>
</tr>
</tbody>
</table>

Article Description

The product of degraded lignocellulose is sugar which can be utilized by microbial consortium for biogas production. However, the hydrolysis of lignocellulose to produce sugar is addressed to be the rate-limiting step due to the complexity of lignocellulose that is barricade for enzyme accessibility. The aim of this work is to study the effect of a lignocellulose degrading microbial consortium to enhance the biogas production from rice straw. Microbial consortium were isolated from natural samples, including horse manure and decomposed wood. The cellulase activities of each microbial consortium derived from horse manure and decomposed wood were characterized to be endo-β-glucanase (0.417 and 0.416) and exo-β-glucanase (0.008 and 0.001).

Bibliographic Details

DOI: 10.1016/j.egypro.2017.11.034

AUTHOR(S):
Prapakorn Tantayotai; Peerapong Pornwongthong; Chotika Muenmuang; Theerawit Phusantikampan; Mallnee Srijayanun

PUBLISHER(S):
Elsevier BV

TAG(S):
Energy

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?
Field-Weighted Citation Impact (FWCI)

Field-Weighted Citation Impact shows how well cited this document is when compared to similar documents. The FWCI is the ratio. A value greater than 1.00 means the document is more cited than expected according to the average. It takes into account:

• The year of publication - three-year window
• Document type, and
• The disciplines associated with its source.

https://www.elsevier.com/editors/journal-and-article-metrics
Climate impacts on European agriculture and water management in the context of adaptation and mitigation: The importance of an integrated approach

Fallon, P. P.; Bates, R.

Met Office Hadley Centre, Fitzroy Road, Exeter, Devon EX1 3PB, United Kingdom

Abstract

We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate, management and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which “mitigate” the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. © 2009.
On the **Overview** page, you can see the article’s key metrics including citation, Field-Weighted Citation Impact (FWCI), Citation Benchmarking, as well as the Scholarly and Social activity/commentary.
Journal-level metrics

Each metric may offer a different emphasis based on its underlying data source, method of calculation, or context of use. For this reason, Elsevier promotes the responsible use of research metrics encapsulated in two “golden rules”. Those are:

1. always use both qualitative and quantitative input for decisions (i.e. expert opinion alongside metrics),
2. always use more than one research metric as the quantitative input.

- CiteScore metrics
- SJR
- SNIP

https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact
Sources

Display options
- Display only Open Access journals
- Display only with minimum 0 Documents
- Sources in last 3 years
- Citations in top 10%
- 1st quartile
- 2nd quartile
- 3rd quartile
- 4th quartile

Source type
- Journals
- Book Series
- Conference Proceedings
- Trade Publications

Filter refine list

<table>
<thead>
<tr>
<th>Source title</th>
<th>CiteScore</th>
<th>Highest percentile</th>
<th>Citations 2018</th>
<th>Documents 2015-17</th>
<th>% Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-A Cancer Journal for Clinicians</td>
<td>160.19</td>
<td>99% 1/122 Hematology</td>
<td>20,184</td>
<td>126</td>
<td>77</td>
</tr>
<tr>
<td>MMWR: Recommendations and reports</td>
<td>87.75</td>
<td>99% 1/89 Epidemiology</td>
<td>1,053</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Chemical Reviews</td>
<td>54.26</td>
<td>99% 1/371 General Chemistry</td>
<td>46,227</td>
<td>852</td>
<td>97</td>
</tr>
<tr>
<td>Chemical Society Reviews</td>
<td>41.35</td>
<td>99% 2/371 General Chemistry</td>
<td>40,522</td>
<td>980</td>
<td>98</td>
</tr>
<tr>
<td>Reviews of Modern Physics</td>
<td>39.2</td>
<td>99% 1/215 General Physics and Astronomy</td>
<td>4,979</td>
<td>127</td>
<td>95</td>
</tr>
</tbody>
</table>
Science of the Total Environment

- **Scopus coverage years:** 1970, from 1972 to Present
- **Publisher:** Elsevier
- **ISSN:** 0048-9697
- **E-ISSN:** 1879-1026

Subject areas:
- Environmental Science: Environmental Engineering
- Environmental Science: Pollution
- Environmental Science: Waste Management and Disposal
- Environmental Science: Environmental Chemistry

CiteScore

- **CiteScore 2018:** 5.92
- **SJR 2018:** 1.536
- **SNIP 2018:** 1.809

CiteScore calculation:

\[
\text{CiteScore} = \frac{40,039 \text{ Citations}}{6,766 \text{ Documents}} = 5.92
\]

CiteScoreTracker 2019:

\[
\text{CiteScore} = \frac{33,969 \text{ Citations to date}}{9,565 \text{ Documents to date}} = 3.55
\]

Metrics disclaimer:

Metrics displayed **are compiled according to Snowball Metrics**, a collaboration between industry and academia.

CiteScore metrics

CiteScore metrics are transparent, comprehensive and current, with the scores and underlying data for more than 23,000 journals, book series and conference proceedings freely available at Scopus.

CiteScore itself is an average of the sum of the citations received in a given year to publications published in the previous three years divided by the sum of publications in the same previous three years.

https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact
CiteScore vs. Impact Factor

CiteScore 2016 value = \(\frac{A}{B} \)

<table>
<thead>
<tr>
<th>CiteScore</th>
<th>Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = citations to 3 years of documents</td>
<td>A = citations to 2 or 5 years of documents</td>
</tr>
<tr>
<td>B = all documents indexed in Scopus, same as A</td>
<td>B = only citable items (articles and reviews), different from A</td>
</tr>
</tbody>
</table>
A defined metric calculation. It better corrects for field-specific differences in citation practices by comparing each journal’s citations per publication with the citation potential of its field, defined as the set of publications citing that journal.

SNIP therefore enables direct comparison of journals in different subject fields.

<table>
<thead>
<tr>
<th>Journal</th>
<th>RIP</th>
<th>Cit. Pot.</th>
<th>SNIP (RIP/Cit. Pot.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventiones Mathematicae</td>
<td>1.5</td>
<td>0.4</td>
<td>3.8</td>
</tr>
<tr>
<td>Molecular Cell</td>
<td>13.0</td>
<td>3.2</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Includes a Field’s Frequency and Immediacy of Citation, Database Coverage, Journal’s Scope and Focus, Measured Relative to Database Median

https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact
SCImago Journal Rank (SJR)

SCImago Journal Rank (SJR) is based on the concept of a transfer of prestige between journals via their citation links. SJR weights each incoming citation to a journal by the SJR of the citing journal, with a citation from a high-SJR source counting for more than a citation from a low-SJR source.

High Impact Journal

Low Impact Journal

https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact
Journal Metrics in Scopus: CiteScore, SNIP and SJR

CiteScore

• an average of the sum of the citations received in a given year to publications published in the previous three years.
• Scoring scale with an average of 1

SNIP

• Field-weighted metric for direct comparison of journals in different subject fields.
• Scoring scale with an average of 1

SJR

• Metric that considers prestigious nature of citations that come from within the same, or a closely related field.
• Scoring scale with an average of 1

www.journalmetrics.com
Find the perfect journal for your article

www.elsevier.com
Elsevier® JournalFinder helps you find journals that could be best suited for publishing your scientific article. Powered by the Elsevier Fingerprint Engine™, Elsevier JournalFinder uses smart search technology and field-of-research specific vocabularies to match your article to Elsevier journals.

https://journalfinder.elsevier.com
Environmental Innovation and Societal Transitions

ISSN: 2320-4224

CiteScore: 8.59
Impact Factor: 7.514
Acceptance rate: 24%
Time to 1st decision: 6 weeks
Time to publication: 33 weeks

List price APC: $2,750
Embargo period: 24 months
Top readership countries: GB, NL, US

View historical data and other metrics on journal insights

Subject area: Renewable Energy, Sustainability and the Environment
Environmental Science (miscellaneous)
Social Sciences (miscellaneous)

Recent articles:
- Stepping the ‘C-Shift’: Insights from the rapid, planned transition of the UK’s natural gas conversion programme
- Branching points and transition pathways in the Greek Natural Gas Regime, 1966–2016
- Grand visions and pragmatic integrations: Exploring the evolution of Europe’s electricity regime

Aims and Scope:
The journal offers a platform for reporting studies of innovations and socio-economic transitions to enhance an environmentally sustainable economy and thus solve structural resource scarcity and environmental problems, notably related to fossil energy use and climate change. This involves attention for technological, organizational, economic, institutional and political innovations as well as economy-wide and sector changes, such as in the areas of energy, transport, agriculture and water management. The journal aims to tackle the most difficult questions, dealing with social, economic, behavioral-psychological and political barriers and opportunities as well as their complex interaction. The journal is multidisciplinary in spirit and methodologically open, and invites contributions from a broad range of disciplines within the social, environmental and innovation sciences.

Specific research areas covered include:
- Theoretical analysis, formal modeling, empirical studies, policy discussion and a critical survey of relevant literature.
- Practical cases may address transitions in specific sectors, cities or regions. Articles on historical transitions not specifically related to environment and sustainability are welcome if they include a section with unique lessons for sustainability transitions.
- A non-exhaustive list of keywords and themes is as follows:
Wrap up

Be curious! And let **Scopus** help you.

Scopus will leads me to cool people.

ScienceDirect will provide me recipe!

Choose the right journals **Scopus & Journals Finder**

Books, journals, encyclopedia, news, etc. All I need in **ScienceDirect**.

Find relevant discoveries; Read others’ discussion. **Scopus & ScienceDirect**
Elsevier’s useful sources
Elsevier Researcher Academy

Elsevier Researcher Academy is an online platform which takes you through the different phases of the research cycle – from the beginnings of research preparation, through the publishing process, all the way to demonstrating impact..

- Prepares PhDs and Postdocs for their careers – either inside or outside of academia
- Helps researchers attain funding for their research
- Facilitates more researchers’ papers being accepted in top journals
- A completely free service, providing support throughout the entire research cycle

https://researcheracademy.elsevier.com/
Elsevier Researcher Academy

Latest

- **WRITING SKILLS**
 - How to turn your thesis into an article
 - Register Now

- **FUNDING**
 - Discover how metrics can boost funding and networking opportunities

- **TECHNICAL WRITING SKILLS**
 - Beginners’ guide to writing a manuscript in LaTeX

Start learning

- **RESEARCH DATA MANAGEMENT**
 - How researchers store, share and use data

- **WRITING SKILLS**
 - 10 tips for writing a truly terrible journal article

- **FUNDING**
 - Discover how metrics can boost funding and networking opportunities

- **TECHNICAL WRITING SKILLS**
 - Beginners’ guide to writing a manuscript in LaTeX

How researchers store, share and use data
Discover the advantages of data sharing and how you can contribute to improving research reproducibility.

10 tips for writing a truly terrible journal article
These top tips on how NOT to write a research article will help you avoid some common pitfalls.

Discover how metrics can boost funding and networking opportunities
A comprehensive guide to scholarly metrics and practical tips to help you leverage them when building networks or applying for funding.

Beginners’ guide to writing a manuscript in LaTeX
Everything you need to know about using LaTeX to ensure your formula-heavy manuscript has a professional polish.
Thank You

I’m a researcher; I do things wrongly before being corrected – Manish Kumar

Kelwalin D.
Elsevier – Customer Consultant

email: K.Dhanasarnsombut@elsevier.com
LINE ID: Kelwalin-elsevier